Sistem bilangan
Sistem bilangan numerik adalah sebuah simbol atau kumpulan dari simbol yang merepresentasikan sebuah angka. Numerik berbeda dengan angka. Simbol "11", "sebelas" and "XI" adalah numerik yang berbeda, tetapi merepresentasikan angka yang sama yaitu sebelas.
Artikel ini akan menjelaskan beberapa sistem numerik. Secara garis
besar terdapat dua sistem numerik, yaitu sistem numerik berdasarkan penambahan (english: addition) dan sistem numerik berdasarkan posisi (eng. position).
20=1
21=2
22=4
23=8
24=16
25=32
26=64
dst
Perhitungan
Desimal | Biner (8 bit) |
---|---|
0 | 0000 0000 |
1 | 0000 0001 |
2 | 0000 0010 |
3 | 0000 0011 |
4 | 0000 0100 |
5 | 0000 0101 |
6 | 0000 0110 |
7 | 0000 0111 |
8 | 0000 1000 |
9 | 0000 1001 |
10 | 0000 1010 |
11 | 0000 1011 |
12 | 0000 1100 |
13 | 0000 1101 |
14 | 0000 1110 |
15 | 0000 1111 |
16 | 0001 0000 |
contoh: mengubah bilangan desimal menjadi biner
desimal = 10.
berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut
10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).
dari perhitungan di atas bilangan biner dari 10 adalah 1010
dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (1 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010
atau dengan cara yang singkat
10:2=5(0),
5:2=2(1),
2:2=1(0),
1:2=0(1) sisa hasil bagi dibaca dari belakang menjadi 1010
- Sistem oktal, berbasis 8,
Sistem Numerik Berdasarkan Penambahan
Sistem numerik yang paling sederhana adalah Sistem numerik unary. Sistem ini sering dipakai untuk melakukan pemilihan pada suatu voting. Contoh dari Sistem numerik Unary adalah Tally mark. Kerugiann penggunaan dari sistem numerik Unary adalah sistem ini membutuhkan tempat yang besar.
Selain sistem numerik unary, contoh lain dari sistem numerik berdasarkan penambahan adalah angka Romawi.
I | 1 |
V | 5 |
X | 10 |
L | 50 |
C | 100 |
D | 500 |
M | 1000 |
Angka Romawi dituliskan dengan simbol dari angka yang tersedia kemudian ditambahkan atau dikurangkan.
Sebagai contoh adalah 1970 disimbolkan dalam angka romawi dengan MCMLXX. Simbol M merepresentasikan angka 1000. Simbol CM merepresentasikan 900,
hal ini dikarenakan oleh peraturan dalam penulisan angka romawi, yang
tidak diperkenakan pengulangan suatu simbol lebih dari tiga kali. Jadi
apabila 900 dituliskan dengan simbol DCCCC maka penulisan tersebut salah. Simbol C disebelah kiri atau sebelum M merupakan angka pengurang dari angka sesudahnya, jadi CM = 1000-100 = 900. Simbol selanjutnya adalah LXX yang melambangkan angka 70.
Angka Romawi ini digunakan di Eropa sampai dengan abad ke 15. Kekurangan dari sistem ini adalah tidak adanya angka Nol.
Sistem Numerik Berdasarkan Posisi
Di dalam sistem numerik ini, penulisan angka berdasarkan posisi dan
basis. Posisi suatu angka dalam sistem ini menentukan nilai dari
bilangan yang diwakilinya. Maka notasi yang digunakan disebut notasi
posisional. Sistem numerik berdasarkan posisi yang sangat terkenal dan
dipakai paling luas adalah sistem bilangan desimal. Sistem desimal
ini merupakan sistem numerik berdasarkan posisi yang berbasis 10.
Simbol 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 adalah bagian dari sistem desimal.
Sebagai contoh 612, angka ini berarti:
- 2 × 100 = 2 × 1 = 2
- 1 × 101 = 1 × 10 = 10
- 6 × 102 = 6 × 100 = 600
Basis eksponen
Selain sistem desimal yang digunakan sehari-hari, terdapat pula sistem lainnya, yaitu:
- Sistem biner, berbasis 2,
Oktal
Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).Biner | Oktal |
---|---|
000 000 | 00 |
000 001 | 01 |
000 010 | 02 |
000 011 | 03 |
000 100 | 04 |
000 101 | 05 |
000 110 | 06 |
000 111 | 07 |
001 000 | 10 |
001 001 | 11 |
001 010 | 12 |
001 011 | 13 |
001 100 | 14 |
001 101 | 15 |
001 110 | 16 |
001 111 | 17 |

- Sistem heksadesimal, berbasis 16,
Heksadesimal
Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:0hex | = | 0dec | = | 0oct | 0 | 0 | 0 | 0 | |||
1hex | = | 1dec | = | 1oct | 0 | 0 | 0 | 1 | |||
2hex | = | 2dec | = | 2oct | 0 | 0 | 1 | 0 | |||
3hex | = | 3dec | = | 3oct | 0 | 0 | 1 | 1 | |||
4hex | = | 4dec | = | 4oct | 0 | 1 | 0 | 0 | |||
5hex | = | 5dec | = | 5oct | 0 | 1 | 0 | 1 | |||
6hex | = | 6dec | = | 6oct | 0 | 1 | 1 | 0 | |||
7hex | = | 7dec | = | 7oct | 0 | 1 | 1 | 1 | |||
8hex | = | 8dec | = | 10oct | 1 | 0 | 0 | 0 | |||
9hex | = | 9dec | = | 11oct | 1 | 0 | 0 | 1 | |||
Ahex | = | 10dec | = | 12oct | 1 | 0 | 1 | 0 | |||
Bhex | = | 11dec | = | 13oct | 1 | 0 | 1 | 1 | |||
Chex | = | 12dec | = | 14oct | 1 | 1 | 0 | 0 | |||
Dhex | = | 13dec | = | 15oct | 1 | 1 | 0 | 1 | |||
Ehex | = | 14dec | = | 16oct | 1 | 1 | 1 | 0 | |||
Fhex | = | 15dec | = | 17oct | 1 | 1 | 1 | 1 | |||
Konversi
Konversi dari heksadesimal ke desimal
Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:Dari bilangan heksadesimal H yang merupakan untai digit hnhn − 1...h2h1h0, jika dikonversikan menjadi bilangan desimal D, maka:
- Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
- Mengalikan dari tiap digit terhadap nilai tempatnya.
- = 256 + 0 + 14
- = 270
Konversi dari desimal ke heksadesimal
Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, yaitu angka desimal 270):270 dibagi 16 hasil: 16 sisa 14 ( = E ) 16 dibagi 16 hasil: 1 sisa 0 ( = 0 ) 1 dibagi 16 hasil: 0 sisa 1 ( = 1 )Dari perhitungan di atas, nilai sisa yang diperoleh (jika ditulis dari bawah ke atas) akan menghasilkan : 10E yang merupakan hasil konversi dari bilangan desimal ke heksadesimal itu.
- Sistem seksagesimal, berbasis 60,
Seksagesimal
Seksagesimal adalah sistem bilangan yang menggunakan angka 60 sebagai dasarnya. Sistem ini berasal dari Babilonia kuno. Sistem ini kemudian digunakan dalam bentuk yang lebih modern oleh orang-orang Arab di zaman Kekhalifahan Umayyad. Basis 60 memiliki kelebihan di mana basisnya memiliki pembagi gampang yang banyak {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, memungkinkan perhitungan dengan bilangan pecahan. Perhatikan bahwa 60 adalah angka terkecil yang dapat dibagi oleh 1, 2, 3, 4, dan 5.- dan sistem numerik berbasis lainnya.
Seluruh sistem di atas menggunakan eksponen. Berarti setiap angka
pada posisi tertentu, nilainya adalah sebesar angka tersebut dikalikan
basisnya dipangkatkan posisinya.
Faktoradik
Faktoradik menggunakan pengali yang berbeda untuk setiap posisi
bilangannya. Pengalinya adalah sesuai dengan faktorial posisinya.
Tidak ada komentar:
Posting Komentar