Jumat, 23 September 2011

Sistem Bilangan

Sistem bilangan

Sistem bilangan numerik adalah sebuah simbol atau kumpulan dari simbol yang merepresentasikan sebuah angka. Numerik berbeda dengan angka. Simbol "11", "sebelas" and "XI" adalah numerik yang berbeda, tetapi merepresentasikan angka yang sama yaitu sebelas.
Artikel ini akan menjelaskan beberapa sistem numerik. Secara garis besar terdapat dua sistem numerik, yaitu sistem numerik berdasarkan penambahan (english: addition) dan sistem numerik berdasarkan posisi (eng. position).




Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.

20=1
21=2
22=4
23=8
24=16
25=32
26=64
dst

Perhitungan

Desimal Biner (8 bit)
0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111
16 0001 0000
Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.
contoh: mengubah bilangan desimal menjadi biner
desimal = 10.
berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut
10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).
dari perhitungan di atas bilangan biner dari 10 adalah 1010
dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (1 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010
atau dengan cara yang singkat
10:2=5(0),
5:2=2(1),
2:2=1(0),
1:2=0(1) sisa hasil bagi dibaca dari belakang menjadi 1010
  • Sistem oktal, berbasis 8,



Sistem Numerik Berdasarkan Penambahan


Sistem numerik yang paling sederhana adalah Sistem numerik unary. Sistem ini sering dipakai untuk melakukan pemilihan pada suatu voting. Contoh dari Sistem numerik Unary adalah Tally mark. Kerugiann penggunaan dari sistem numerik Unary adalah sistem ini membutuhkan tempat yang besar.

Selain sistem numerik unary, contoh lain dari sistem numerik berdasarkan penambahan adalah angka Romawi.

I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Angka Romawi dituliskan dengan simbol dari angka yang tersedia kemudian ditambahkan atau dikurangkan.

Sebagai contoh adalah 1970 disimbolkan dalam angka romawi dengan MCMLXX. Simbol M merepresentasikan angka 1000. Simbol CM merepresentasikan 900, hal ini dikarenakan oleh peraturan dalam penulisan angka romawi, yang tidak diperkenakan pengulangan suatu simbol lebih dari tiga kali. Jadi apabila 900 dituliskan dengan simbol DCCCC maka penulisan tersebut salah. Simbol C disebelah kiri atau sebelum M merupakan angka pengurang dari angka sesudahnya, jadi CM = 1000-100 = 900. Simbol selanjutnya adalah LXX yang melambangkan angka 70.

Angka Romawi ini digunakan di Eropa sampai dengan abad ke 15. Kekurangan dari sistem ini adalah tidak adanya angka Nol.

Sistem Numerik Berdasarkan Posisi


Di dalam sistem numerik ini, penulisan angka berdasarkan posisi dan basis. Posisi suatu angka dalam sistem ini menentukan nilai dari bilangan yang diwakilinya. Maka notasi yang digunakan disebut notasi posisional. Sistem numerik berdasarkan posisi yang sangat terkenal dan dipakai paling luas adalah sistem bilangan desimal. Sistem desimal ini merupakan sistem numerik berdasarkan posisi yang berbasis 10. Simbol 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 adalah bagian dari sistem desimal. Sebagai contoh 612, angka ini berarti:

2 × 100 = 2 × 1 = 2
1 × 101 = 1 × 10 = 10
6 × 102 = 6 × 100 = 600

Basis eksponen


Selain sistem desimal yang digunakan sehari-hari, terdapat pula sistem lainnya, yaitu:

  • Sistem biner, berbasis 2,

 

Oktal

Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).
Biner Oktal
000 000 00
000 001 01
000 010 02
000 011 03
000 100 04
000 101 05
000 110 06
000 111 07
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14
001 101 15
001 110 16
001 111 17
E-to-the-i-pi.svg

Heksadesimal

Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:













0hex = 0dec = 0oct
0 0 0 0

1hex = 1dec = 1oct
0 0 0 1

2hex = 2dec = 2oct
0 0 1 0

3hex = 3dec = 3oct
0 0 1 1













4hex = 4dec = 4oct
0 1 0 0

5hex = 5dec = 5oct
0 1 0 1

6hex = 6dec = 6oct
0 1 1 0

7hex = 7dec = 7oct
0 1 1 1













8hex = 8dec = 10oct
1 0 0 0

9hex = 9dec = 11oct
1 0 0 1

Ahex = 10dec = 12oct
1 0 1 0

Bhex = 11dec = 13oct
1 0 1 1













Chex = 12dec = 14oct
1 1 0 0

Dhex = 13dec = 15oct
1 1 0 1

Ehex = 14dec = 16oct
1 1 1 0

Fhex = 15dec = 17oct
1 1 1 1













Konversi

Konversi dari heksadesimal ke desimal

Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:
Dari bilangan heksadesimal H yang merupakan untai digit hnhn − 1...h2h1h0, jika dikonversikan menjadi bilangan desimal D, maka:
D = \sum_{k=0}^{n} h_k \times 16^k
Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam bilangan desimal:
  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.
1 \times 16^2 + 0 \times 16^1 + 14 \times 16^0
= 256 + 0 + 14
= 270
Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270.

Konversi dari desimal ke heksadesimal

Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, yaitu angka desimal 270):
 270 dibagi 16 hasil:  16   sisa 14  ( = E )
  16 dibagi 16 hasil:   1   sisa  0  ( = 0 )
   1 dibagi 16 hasil:   0   sisa  1  ( = 1 )
Dari perhitungan di atas, nilai sisa yang diperoleh (jika ditulis dari bawah ke atas) akan menghasilkan : 10E yang merupakan hasil konversi dari bilangan desimal ke heksadesimal itu.

Seksagesimal

Seksagesimal adalah sistem bilangan yang menggunakan angka 60 sebagai dasarnya. Sistem ini berasal dari Babilonia kuno. Sistem ini kemudian digunakan dalam bentuk yang lebih modern oleh orang-orang Arab di zaman Kekhalifahan Umayyad. Basis 60 memiliki kelebihan di mana basisnya memiliki pembagi gampang yang banyak {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, memungkinkan perhitungan dengan bilangan pecahan. Perhatikan bahwa 60 adalah angka terkecil yang dapat dibagi oleh 1, 2, 3, 4, dan 5.

  • dan sistem numerik berbasis lainnya.

Seluruh sistem di atas menggunakan eksponen. Berarti setiap angka pada posisi tertentu, nilainya adalah sebesar angka tersebut dikalikan basisnya dipangkatkan posisinya.

a_na_{n-1}...a_2a_1a_0 = \sum^{n}_{i=0}a_i\times b^{i}

Faktoradik



Faktoradik menggunakan pengali yang berbeda untuk setiap posisi bilangannya. Pengalinya adalah sesuai dengan faktorial posisinya.

a_n,a_{n-1},...,a_2,a_1,a_0 = \sum^{n}_{i=0}a_i\times i!

Tidak ada komentar: